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ABSTRACT

A computational study is presented of the properties of a
guardring~type circular planar Langmuir probe, commonly flush-mounted
in the skin of a satellite. This geometry results in a three-
dimensional potential distribution which cannot be treated analytically,
even in axially symmetric problems. Given arbitrary particle velocity
distributions at infinity, the current-voltage characteristics of the
extérnal.aperture grid and of an internal repelling collector (for
attractive aperture grid potentials) may be determined by detailed
particle trajectory calculations. The electric field and charge
density distributions in the vicinity of the probe are defined at the
nodes of a grid. The charge density in the Poisson equation is evaluated
by summing tréﬁectory contributions. The collected currents are
similarly evaluated. The Poisson field is computed self-consistently
by an iterative technique. Two kinds of particle velocity distribu-
tion are considered, e.g., a streaming Maxwellian at infinity, and
photoelectric (or secondary) emission at the satellite surface. An
infinite-satellite model is assumed for the Poisson case (Debye
length = 1 cm). For the Laplace case (Debye length infinite), the
effects of finite satellite dimensions, of Mach streaming at an angle,

and of photoelectrons are investigated.
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I. INTRODUCTION

The work of this report is concerned with computer methods for
calculating the particle velocity distribution at (and the current col-
(1-2)

This

probe, illustrated in Fig. 1, is commonly flush-mounted on satellites,(3)

(4)

lected by) a circular planar probe in a collisionless plasma.

and is geometrically similar to a laboratory planar guard—riné probe.
There is no exact analytic theory available for this multi-dimensional
probe., However, an approximate theory for the central point is given

in Ref, 2, based on velocity space analysis. The theory of Ref. 2 will

be considered as supplementary to this réport,and will not be repeated
here. Rather, the cdmputational aspects of the problem, which are treated
only briefly in Ref. 2, will be given primary attention. The determina-
tion of the electric field configuration, in other words, the structure

of the sheath, is the heart of the problem,

The present computer program is capable of evaluating either
the particle number density or the current density, i.e., moments of  the
velocity distribution, at an arbitrary point in space. Either moment.
may be expressed as an integral of the phase space density over velocity
space. Replacement of the (triple) integral by an approximating Gaussian
quadrature sum is equivalent to consideration of a finite number of
trajectories (to represent all possible trajectories pasgsing through the
point). On each trajectory, the phase space density is constant. The
trajectories are dynamically reversible in the time-independent field,
and by following each trajectory backwards in time to its origin, where
the phase space density is considered known, one may evaluate the terms
in the quadrature sum. The word "origin" means infinity or an emitting

surface.

The electrostatic potential configuration is represented by a
grid, at the points of which the potential is defined. The electric
field is defined by interpolatioﬁ. The boundary of the grid represents



the surface at "infinity" for computational purposes. Thus, the net
charge density can be evaluated at each grid point by calculating
separately the contributions of-attracted and repelled particles, in any

fixed potential distribution.

However, the potential distribution is not known and depends
~in turn on the charge density, as well as the probe and satellite poten-
tials, through the Poisson equation. Thus, the charge density and

potential distributions must be made self—con31stent.

An 1terat10n technlque ‘seems to be . the only feasible means for
accomplishlng‘thls task. Progress has been made along these lines for
the special (one-dimensional) cases of spherlcal and cylindrical probes
in a plasma at rest.(_) When the Laplacian operator is approximated by .

a difference operator on the grid, there results a set of non—lihear
equations for the values of the potential (alternatively; the density)

at the grid points, The iteration technique is applied to this set of
equatlons. Whethef’the iteration converges or mnot depends on the boundary

condltlon, in the follow1ng Wayo

The condition that the potential must fall»off to"zefo at
infinity requires special treatment whenkwe employ a grid of‘finite
dimensions. In the present investigation, for each case a sequence of
problems is solved in Wthh the only parameter whlch changes is the
outer grid dimension, or effective grid boundary radlusa The Value of
the collected current depends strongly on the grld radius when thls radius
is small. As the radius is 1ncreased however, the current tends toward
a "stationary" value° It is th1s stationary wvalue whlch corresponds to
the infinite boundary condltlon. This behavior has also been noted in

Ref. 5.

Unfortunately, obtaining the solution is not only a matter of
moving the grid boundary outward in steps and re-solving the problem at
each step, while monitoring the collected current, until the desired

degree of "stationariness" is attained. As the boundary is moved outward,

-2 -



the iteration process itself tends to become unstable and diverge. There-
fore, a sophisticated iteration scheme has been developed in which
successive density (or potential) iterates are linearly combined, or
"mixed". (This method is also used in Ref. 5.) The iteration can, in
this way, be made to converge for any boundary radius by suitably adjust-
ing the mixing ratio. However, the number of iterations required, and

therefore the computing time, would grow with increasing boundary radius.

There are other numerical parameters which must be considered
such as grid mesh size, trajectory step size (accuracy), and number of
trajectories per space point. The computed current must be "stationary"
with respect to changes in these parameters, as well. Among these
parameters, trajectory step size has been found to be most critical, and

grid mesh size least critical.

Calculations have been performed for two types of particle
velocity distribution, namely, a streaming Maxwellian at infinity
(Secs. II - VII), and photoelectric (or secondary) emission at the

satellite surface (Sec. VIII).

In Sec. II, the forms of the moment integrals (particle and
current density) are considered,with contributions in velocity space
separated into two parts, namely, contributions from infinity, and

contributions from nearby surfaces.

In Sec. III, the moment integrals are specialized to energy-

angle velocity space.

In Sec. 1V, the satellite is assumed to be an infinite plane,
and calculations are discussed for the Laplace field (infinite Debye
length). The current-voltage characteristic of the circular planar
probe is linear at large probe potentials, This linearity is consistent

(4)

with experimental data obtained in guard-ring probe measurements.

In Sec. V, solutions of the sheath problem (Poisson field) and

attracted:particle currents are discussed. The Debye length is equal to



0.3 probe radii, the probe potential energy is -45.54 kT, and the satel-
lite is infinite. The current density at the central point, for Mach
zero, is 33.3, in units of the current at zero potential. This value is
nearly the same as the corresponding value for the Laplace field, namely,
35,5, thus indicating approximate independence of the central current
density with respect to Debye length. This result is predicted by the .
theory of Ref. 2. . The current.density on the probe surface falls off.
more rapidly with radius in the Poisson field than in the Laplace field.
Thus,'the current collected by a finite.area, relative to the current at
zero potential, would be less at small Debye lengths than at large Debye
lengths (for equal probe potentlals) This accounts for the P01sson
value of 25 versus the Laplace value of 36 when the collecting radius

is an apprec1able fraction, i.e., 1/2, of the probe radlus.(k) éomé
computational aspects of the Poisson problem are also d1scussedlin

Sec., V. Tests with different boundary 1aw3'(floating—dipole and zero-
potential) show the stationary value of the current to be independent of -
these laws. Moreover, tests made with increasing grid boundary radii show
that the current approaches its stationary value rapidly for ‘grid radii

greater than about.1l,5 probe radii.

In Sec. VI, the velocity distribution at the aperture grid is
considered, especially the distribution in normal components of velocity.
The latter distribution determines the current collected by an internal
collector which is biased relative to the aperture grid, which has a
fixed attractive potential, When the collector is repulsive with respect
to the plasma, its current characteristic approximates that of a simple
repelling probe,,regardlessvof the fact that the aperture grid is
attractive. The approximation,becoﬁes improved when the collecting area
is restricted to a small region at the center of the probe. The theory
of Ref. 2 provides an explanation for this behavior. When the collector
is attractive with respect to the plasma, the current rises linearly for

(2)

some range of the collector potential, and subsequently levels off.



Section VII deals with the isolated satellite in the form of a
truncated cylinder. The calculations yield the same central-point current
density, in the Laplace field, as that obtained for the infinite satellite.
This agreement is due to the large dimensions of the satellite (of the
order of a meter) compared with the probe radius (a few cm). The Poisson
field was not calculated, but at small Debye lengths the current should
be even less dependent on the satellite size than in the Laplace fleld
When the particle velocity distribution is a Maxwellian with Mach ﬁhmber
M and Mach vector angle y with respect to the probe normal, the current
divided by Mcosy, which would be constant in one-dimensional infinite-

ﬁlane geometry, falls off instead with increasing v.

In Sec. VIII, test calculations are discussed for monoenergetic
photoelectrons emitted at the surface of the isolated satellite and
collected in the Laplace field of the probe. The intensity of emission
at a point is proportional to the cosine of the anglerf incidence of
solar radiation. The collected current is found to be a maximum when
the solar radiation is incident along the axis of the probe (solar angle

zero), and to fall off as the solar angle increases,

In Appendix A, the difference equations for the Laplace or
Poisson problems are derived for the infinite and isolated satellites,

and the method of solution is given for the linear equationms.

In Appendix B, the conversion of moment integrals to Gaussian

quadrature (trajectory) sums is treated.

In Appendix C, the equations of motion and the method of inter-
polation in the grid are discussed for the trajectory calculations., A

step-size control for trajectory accuracy is also given.
In Appendix D, the iteration process is discussed.

In Appendix E, the problem with fixed zero potential on the
boundary is consideréd in detail., All steps of the iteration process are

presented in order to illustrate the method of computation.



In-Appendix F, test calculations are.discussed which illustrate
how changes at. the grid boundary affect computed values of current and

~density.



ITI. INTEGRALS AND DOMAINS IN. VELOCITY. SPACE

The considerations of this section are based on the assumption
of a fixed field configuration., The scalar particle density n(;) and the
vector current density }(;) at a point T in ordinary space may be written

as triple integrals over velocity space of the form

n(®) =[[[f(?, 3 @y (2-1)
1@ =fff?r £@E, ) a% (2-2)

where v is the vector velocity of a particle passing through the point

r. The distribution function f(;,'z) is the density of points in six-
dimensional phase space. In the time-independent collision-free case, and
where the particles move under conservative forces, the emnergy E is

constant along any trajectory. The function £ in (2-1) and (2-2) depends only
on the constants of motion and thus is constant along eachAtrajectory.

That is, each trajectory, characterized by a pair of vectors (g, 3),

connects points of equal values of f.

The region of interest may be considered to be enclosed by a
composite boundary surface where the phase density is assumed known.
The boundary consists of two portions. One portion is the "external'
surface at infinity, where an unperturbed particle velocity distribution

is assumed to exist, e.g., a streaming Maxwellian in the form:

= m -u -
£, (v, a) = no(anT) e (2-3)



where

u = = (*v*2 + voz - 2vmv5'coéew) o (2-4)

In (2-3), n is the unperturbed particle density, m is the particle mass,
T is the temperature, 3w is the velocity at infinity, 35 is the streaming
(Mach) velocity, and 6, is the angle between ;g and 36. The distribution
(2-3) replaces the function f whenever_? and v define a trajectory which

connects with infinity.

The other portion of the boundary consists of "internal" sur-
faces in the near vicinity, such as the probe and satellite surfaces,
If these internal surfaces emit particles such as photoelectrons or
secondary. electrons, then there is a non-vanishing distribution fS which
appears in (2-1) and (2-2) whenever r. and ; define a trajectory which

connects with the surface,

Disregarding trajectories corresponding to trapped particles,
we See that (2-1) and (2~2) may be resolved into the sum of two triple

integrals, namely,

n(r) =n_ +n =ffff;°'d3;;+ffffsd3:f> (2-3)
) s

> > > - > ;3'—> ‘+ 3 > !

j(r)=3m+35=fffvfmd v+ffjvfsdv (2-6)

where the first integral in each equation is comprised of all contribu-
tions coming from infinity, and the second integral is comprised of all

contributions coming from the near surfaces.



The whole of 1ocai velocity space, i.e., the vector space ;, is therefore
divided in two domains, one corresponding to conpections with infinity,
and the other corresponding to connections with a near surface. There is
a surface of demarcation separating these two domains in velocity space.

This surface may be traced out by trajectory calculations.

In order to determine whether a specified velocity v (at 1)
connects with infinity or with a near surface, the trajectory may be
followed backwards in time to its origin (all trajectories being
dynamically reversible). In general, this is a task for a computer, and

a computational scheme is outlined in. the next section.



" IIT. DENSITY AND CURRENT

Since isotropic velocity distributions are frequently of interest,
it will be convenient to express the velocity space volume elements. of

Sec. II in polar form. Thus, (2-1) and. (2-2) become -

> Y i B ; - -
o [fftwa o
sphere " o
j (r) = f v’ dv cosa d@ (3-2)
hemisphere

where we‘have expressed the volume element by
> 2
d” v =v dv dQ, dQ = sino do dB (3-3)

and where v, o, and $ are the magnitude, polar angle, and azimuthal angle,
respectively, of the velocity vector Y. The scalar equation (3-2) implies
that j is the component of the current density vector 3 in the direction
of the chosen axis (e.g., the normal to the probe surface). In (3-1)

the angular integration is over the sphere (47 steradians), while in

(3-2) the angular integration is over the forward hemisphere (27

steradians).

More useful forms for the equations are obtained if the integra-
tion over v is converted into an integration over kinetic energy E df
the particles at the emitting surface. Thus, when the potential energy
is a function @(;) with respect to the emitting surface, we -have the

differentials:

- 10 ~



1/2 |
ve dv = (%) E-0)1/? aE (3-4)
m

and

v dv = -2—5 (E-9) dE (3-5)
5 |

where E-¢ is required to be positive. Otherwise, the differentials vanish.
Note that the total energy for the trajectory is E+¢S, where @S is the
potential energy of the emitting surface.

~ For concreteness, assume that there is a streaming Maxwellian
velocity distribution at infinity with streaming velocity vo,'and an
isotropic emission (e.g., secondary or photoelectric) function at the
satellite surface outside the probe. Then the density integrals are

given by the following formulae:

n=n_ + n (3-6)
where (see Sec, II)
n 2
n=—2 dE @)% | [e™ an (3-7)
2ﬂ3/2
Max(4,0) « (sphere)
with (see Equation (2-4))
u2 = E + M; - 2El/2 cos@_ (3-8)

- 11 ~



and

E =, /2kT, M =y P/, ¢ = o/kT (3-9)
. > 1/2
f (E, r') dE (E-0)
i&n (r) i B S (3-10)

b4 "

>
(sphere) Max(¢,0) J(fs_(E"rs) £

0

The symbol Max(p, 0) is defined to be p if p > 0, and zero-if p < 0. 1In
(3-7), E, ¢, and M are the dimensionless energy, potential, and Mach
number according to. (3-9), and @ is the local potential relative to infinity,
where the density is n.. Moreover, the integral over solid angles in
(3-7) includes only directions such that the traJectorles of dlmen31onless
energy E originate at infinity. In (3-10), E is dimensional, S(E, rs)
is the kinetic energy distribution of emitted particles at the trajectory
emission point g;, oo is the density of emitted partlcles at the point

r s and the integral over solid angles 1ncludes only directions such that
the trajectories of kinetic energy E originate at the satellite surface.
Note that ;s depends on the trajectory, and that & is the 1oc31 p6tentié1

energy relative to the satellite.

. , .
Similarly, the probe current integrals at a point r on the probe

surface are given by the following formulae:

j=3,+ js (3-11)

where

1/2

. cosa dii dQ
b F no 2ﬂm

dE (E-¢) (3-12)

Max(¢ 0) ® (hemlsphere)

- 12 -



with u2 defined by (3-8) and (3-9), and

-]

>
f (E, r ) dE
. coso dQ iy s ~ ' "s _ |E-% 1
Ig T m jso(rs) ) (-E ) (3-13)
s (hemisphere) Max(¢,0) J[,fs (E, zs)dE
. Jo

The quantitieé in (3-12) are defined as in (3-7), and the quantities in
(3-13) are defined as in (3-10), with ;;_being the point of origin of

the trajectory on ;he satellite surface, Here, jéo ii the nbf?al compopent
of current density of emitted particles at the point ros and E is the

mean kinetic energy of the emitted particles. Note that (3~13) assumes
isotropic emission at the point g;. This is equivalent to assuming a

"cosine law" for the current density per unit solid angle.

Equation (3-11) is based on the assumption of no emission from
the probe surface. If such emission were to be considered, an integral
of the form of (3-13), but counting only trajectories which griginate at
other points ;; on the‘probé surface, would give that part‘of the current

density which returns to the probe at the poiat %,

- 13 -



1V. PROBE CURRENT IN LAPLACE FIELD. -- INFINITE SATELLITE

If the satelllte in whose skin the circular planar probe is
mounted is so large that 1ts dimensions are large compared with an effec-
tive length character121ng the range of the potentlal field of the probe,
then the satellite may be represented to a good approximation’ by an
infinite flat plane., This approximation is consistent provided the
satellite is at the plasma potential. The geometry may then be well
represented by an infinite plane held at zero potentlal as in F1g 2,
in Whlch there is a clrcular region (1 e., the probe) ‘held at potentlal
(energy) o =__Vo' Flgure 2 idealizes the 0G0 probe which consists of

an outer grld and an inner collector (plus 1ntermed1ate grlds not shown)

Lettlng T, and z denote cylindrlcal radlal and ax1al coordlnates,
respectively, the potentlal distribution is given, for infinite Debye

length, by the Laplace solution:
. . ez . v
o(r, 2z) = Qo |e | ;l(x) ;o (gr) dx (4_1)

where r and z are multiples of the probe radius. A large tabulation and
contours of the integral in (4-1) are given in Ref, 1, (See also

Table 1.) In the fixed potential field defined by (4-1) or Table 1, the
current density of attracted particles coming from a streaming Msxwellian
velocity distribution at infinity is computed by evaluating Equation (3-12)

numerically.

In order to do this, we replace (3-12) by a quadrature sum,

as shown in Appendix B, in the form:

- 14 -



' - . 2 .
I 2dx [!'_"1‘. + E - ¢] dy dz se % (4=2)
Io (l?x)z 1-x win 2 2 ‘ '
L1 -1 1
. ' 1+ 3 . : ;
- , Tk +E. =-¢
1 }: }E:j{: 1-x min -
= 3 ) B By H S = 8, e kim (4-3)
k 2 m Qa- xk)

where j 1s evaluated at a radial position ;é on'the_probe, jo = no(kT/an)l/2
is the random current density at infinity, § is a Heaviside function
which is unity if the tréjectory connects with infinity, and Emin = Max (¢,0)

is the lower limit of the energy integral. In obtaining (4-2) we have
made the transformations ) '

E= (1+x)/Q - x) + Emin , (4-4)
sinZy = (y + 1)/2 ' (4-5)
8 =q(z+ 1) (4-6)

where x, y, and z vary in the range (-1, 1), Then Gaussian quadrature
formulae may be employed for each of these variables, with abscissae
Xs Vos and z , 80 that Ek = E(xk), a, = a(yy), and Bm = B(an through
(4-4) - (4-6). The associated coefficients are Hk’ HZ’ and Hm’
respectively. The index triplet (k, £, m) in the sum (4-3) defines a
single trajectory at the point ;é, which may be traced backwards in



time according to the prescription in Appendix C. The fuantity uizm in
the exponential of (4-3) is the value of u? given by (3-8) at the end of

the trajectdry,and the quantity & is defined to be unity if the

trajectory is found to come from ?ﬁ?inity, and zero otherwise. The

number of triplets, or terms in the sum (4-3), is equal to the total

number of trajectories, If the streamlng direction is parallel to the

probe axis, there is no preferred 321muthal plane; then symmetry allows

us to replace T by n/2 in (4= ~6) and thus obtain hlgher quadrature accuracy in
the B—~integration, with the same Gaussian order. If the field is axially
symmetrlc (e.g., the Laplace fleld), the B—lntegratlon is trivial at the

centtal p01nt of the probe.

The current—collectlng area (aperture) was deflned to have a
radius R = 1, 665 cm, i.e., one—half of the probe radlus 3.33 cm, in these
calculations. If r and © denote the radial and az;muthalAeoordlnates of
a point, the current collected by the aperture is given by an integration

over the surface area, namely:

L27
2
I de dr
I 2w 2 (4-7)
o
%)
=% H H [+ (4-8)
P 4 P 43,
Pq
where the transformations have been made:
8 =q1(a_+1) -~ - . (4-9)
p p

- 16 -



- /2 -
r, = RI(b_ +1)/2] (4-10)

In (4-7) and (4-8), Io = nRz jo, and in (4-9) and (4-10), ap and bq are
the Gaussian abscissae for the azimuthal angle and radial integrations,
respectively. If the streaming direction is parallel to the probe axis,‘
the azimuthal integral is trivial since j is indepen@ent of 9.

In all calculations for the infinite satellite case, the
streaming direction was parallel to the probe axis. For the Laplace .
field, the currents were found to be essentially independent of the grid

boundary position beyond about two probe radii.

Table 2 gives computed current of ions collected by the aperture
(in multiples of the current at zero potential), at Mach zero, as a
function of aperture potential energy (in multiples of kT)., The potential
energy is negative in the ion~attraction range. In the left-hand column,
the voltage equivaléﬁt is given for an assumed temperature of 1300°K,
In order to caléulate these currents (see Appendices A and B), the
Laplace potential given by (4-1) was represented on a grid with outer
boundaries at r = z = 3a, where a is the probe radius (3.33 cm). The
grid was divided into 12 equal intervals in both r and z. (Figure A-1
‘shows such a grid with 6 intervals in r and z.) Thus,Ar = Az = a/4 (or
0.8325 cm) for 12 intervals, and a/2 for 6 intervals. The currents were
calculated using 16 values of k, 8 values of %, and 8 values of m in (4-3),
and 3 values of q in (4-8), that is, a fairly coarse resolution. The
trajectory step length was selected to be 0.24 Ar (or 0.2 cm). Subse-
quent work shows that the value of the current depends strongly on the
step size or trajectory accuracy (see Appendix C); for the rather coarse
step size used (0.2 cm), the currents in Table 2 are edtimated to have .
errors of the order of 5% at the highest potentials, and less in the low-
potential range. The most striking result is the linear behavior of

the current, with slope very close to 3/4. A theoretical justification

- 17 -



of this linear behavior andvélope is given in Ref. 2., Also, the behavior
of an experimental circular planar guard-ring probe in the laboratory is

(4)

consistent with these calculations.

Table 3 gives the computer current at various Mach numbers in
the Laplace fleld with probe potentlal flxed at ~45,54 kT corre3pond1ng
to -5.1 volts at 1300°K The current is glven in multiples of “the zero—
potential current, so that this ratio approaches unity at large Mach
numbers. The grid employed had outer boundaries at r = 3a and z = 1.5a,
with 6 equal intervals in each direction, The step size was ,025 cm, or
0.03 Az = 0.015 Ar. The current densities at 3 radial positions are also
given in Table 3. The variation with radius of these current densities
should diminish with increasing Mach numbers., The fact that the radial
variation is not reduced with increasing Mach numbers indicates that the
number of trajectories employed (i.e., the orders of the Gaussian quadra-

tures) must be increased to maintain accuracy at large Mach numbers.

"Table 3 repldces the curve in Fig. 5 of Ref. 1, which is some-

what in error since it was computed with.a very large step size (0.8 cm).

- 18 -



V, PROBE CURRENT IN POISSON FIELD -~ INFINITE SATELLITE

For the Poisson problem, the grid (Appendix A) employed for
defining the potential field may also be used for defining the particle
density distributions. The numerical problem to be solved may be
expressed in a schematic vector form in terms of dimensionless quanti-
ties, namely:

->

1§ =a@ -2, (5-1)

Equation (5-1) represents the Poisson equation in difference form
(Appendix A) as a set of N simultaneous equations with N unknowns, where
N represents the number of grid points where the potentials and densities
are to be evaluated. The values of the potential at the grid points are
considered to be components of an N~-dimensional vector 3, and the values of
the electron and ion particle densities at the grid points are also com-
ponents of N-dimensional veetors Ke and gi, respectively. The operator
L in (5-1) is the matrix operator derived from the differencing of the
Laplacian operator. The right-hand side of (5-1) expresses the fact

that each component of Ké or Ki generally depends on more than one com-

>
ponent of ¢,

> > >
Since the relationship between n_, 0, and ¢ is non-linear, an
iteration procedure must be used. Starting with a (zero-order) guess
> - ‘ '
for ¢, for example, the Laplace field, we calculate first-order vectors

Ké and n, in this field (Appendix B), and solve (5-1) for a new

(first—oider) 3. Iteration continues until the right-hand and left-hand
sides of (5-1) are consistent. if one actually starts with the Laplace
solution, i.e., if the initial guess is poor, the procedure may diverge
unless a suitable artificial damping process is'imposed. Appendix D
treats the problem of iteration with damping, which is introduced through

the coupling or mixing of successive iterates. In general, the tendency
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of the iteration to diverge depends on the position of the boundary. If
the boundary is very near (to the probe), the iteration is stable even
without damping. But since the desired current must correspond to a
theoretical boundary at infinity, the computational boundary must in
practice be placed at a sufficiently great distance that its position does
not affect the current. At the same time, however, the direct iteration
without damping becomes highly unstable, and the solution is difficult

to achieve. Experience indicates that with sufficiently strong damping
one may always obtain a solution, at the cost of increasingly lengthy

computing time.,

‘The calculations presented in Appendlx E illustrate the method

of iteration with mixing.

Self—consistent Poisson solutionskat Mach zexro (Table 4) and
Mach 3 (Table 5) have been obtained for a Debye length of 1 cm, i, e,, 3/10
of the probe radlus (3.33 cm), at a probe potentlal of -45.54 KT (-5.1
volts with T = 1300°K)

For the Mach zero case, the total current collected in the

Poisson field with Debye length 1 cm, by an area 1.665 cm in radius, is
25 (Table 6) in multiples of the zero-potential current. For the same
problem but with infinite Debye length, i.e., the Laplace field, the
total current is 36 (Table 6). These values for the total current (of
either attracted 1ons or attracted electrons) were obtalned by 1ntegrat1ng
the current density over the c1rcular collectlng area, using 3 radial
points. (See (4-8).) Table 6 gives the values of the total collected
current and of the current dens1ty at the 3 radlal points, in’ multlples
of the zero-potential values° Also glven is the current den31ty at the
central point, namely 35. 5 and 33.3 for the Laplace and Poisson flelds,
respectively. These current densities are the ‘most accurate avallable

values, having been computed w1th 64 values of k.and L.

The central-point current density was calculated using fine

trajectory resolution, namely, 64 values of k and 32 values of & in
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(4-3), and small step size, to obtain high accuracy. It is interesting
that the current density is nearly the same for the Poisson and Laplace
fields, i.e., 33.3 and 35.5, respectively. The central current density
has been treated theoretically for the Mach zero case in Ref. 2. There
it is shown, on the basis of an impulse approximation employing straight-
line trajectories, that the central current demsity is approximately
independent of Debye length (i.e.; of the shape of the potential fall-
off). However, Table 6 shows that the currenta&ensity falls off with
increasing radius more rapidly in the Poisson case than in the Laplace
case (in which it is nearly constant). This accounts for the fact that
the current collected by a finite area in the Poisson case is considerably
less than in the Laplace case. It may be expected that as the Debye
length gets small, the current density will drop off more and more

rapidly with radius.

For the Mach 3 case, the total collected ion current is 2.4
for the Poisson field, and 3.2 for the Laplace field.  There is no
noticeable fall-off in current density with radius. ‘However, the values

are not accurate since too few trajectories were used,

The grid employed for the Poisson density and potential calcu~-
lations was the same as that used for the Laplace field current calcula-
tions (Appendix A). The difference equations were tested by comparing
their solution in the Laplace case with the exact solution (e.g., Table 1).
A solution of adequate accuracy (in the sense of small variations in the
current) was obtained using a grid with outer boundaries at r and z in
excess of about 2 and 1.5 probe radii, respectively. The role played by
the fineness of the grid mesh, i.e., the size of the grid intervals Ar
and Az, is not yet well established. Currents calculated with 6-interval
or 12-interval grids seem considerably less sensitive to trajectory
accuracy than 3-interval grids. Similar observations apply to density

calculations.
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Test calculatlons were made with a series of Poisson problems
with 1ncrea51ng values of z at the boundary, to determlne the boundary
position beyond which the current becomes stationary. These tests indi-
cate that boundary values of z greater than 1.5 probe radii are probably

adequate, and that one should certainly be safe at 3 probe rad11.

A dipole law was assumed at the grid boundary in order to allow
the potential to float. (The dipole law is the correct asymptotic law
for the Laplace field.) This procedure has been found in spherically

(5)

symmetric probe calculations to be more efficient than that of
fixing the potential to be zero. In the present work, a zero-potential
boundary problem (Appendix E) was solved, yielding the same central current

density (within 3%) as the dipole boundary problem..

Selected numerical results bearing on some of the above

questions are discussed in Appendix F.

The ion and electron particle densities are tabulated, for
the Poisson Mach zero problem in Tables 7 and 8, and for the Poisson.
Mach 3 problem in Tables 9 and 10. The trajectory step-sizes used at
the various grid points are indicated by the numbers in parentheses in
the ion density tables, These were determined by tests, at each point,
on the approach of the densities toward stationary values. (See .
Appendix E for illustration.) The difference scheme used for these
calculations (Appendix A) did not require the values of the densities

either at points on the boundary or on the axis. .

The density calctulation is performed by replacing (3-7) by a

transformed integral and quadrature similar to (4-2) and (4-3), namely:

1 : 1 1

1/2 2
n_ 2dx ﬁ e _¢] dy .gg_se—u (5-2)

n \/“' a - X)Z l’— X min » 2
-1 -1 -1
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e o | - ¢
! - - % nin _uﬁz
2 — ZZZHkH H 7 S am © m (5-3)
2 m ,

where (5—3) is similar in form to (4-3), with similarly defined quantities.
However, élthough the energy and azimuthal angle transformations are
identical to (4-4) and (4-6), the polar angle transformation is given by
cosa = y instead of (4-5). (See Appendix B.)

For the density calculations, 16 values of k, 8 values of &,
and 8 values of m were used at each density point. These numbers were
determined on the basis of tests with the Laplace field, which is
relatively slowly-varying. The same number of trajectories,‘i.e., 1024,
was used at each point for the Poisson problems as well, although the
more rapid variation of potential probably requires higher trajectory
resolution (more trajectories) to maintain low error at individual density
points. This coarse resolution was employed in the interest of saving
computer time, with the expectation that for the final current the net
error would probably be less than that of any individual density. The
required resolution should be increased with ihcreasing Mach number,
however, and therefore the Poisson results in the Mach 3 case must be

considered as much more approximate than those in the Mach zero case.
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VI. VELOCITY DISTRIBUTION AT THE APERTURE. RETARDED CURRENT.

Let the eperture*grid‘of the probe be at a fixed attractive
voltage with respect to the plasma, and let a parallel collector behind
the aperture grid have a variable bias relative to the aperture grid, as
illustrated in Fig, 2. If the collector is attractive with respect to
the aperture grid, then all of ‘the current pass1ng through the aperture'”
is collected by the collector° The current—collectlon formulae discussed
in the previous sections refer, therefore, to the current collected by a
collector which is at zero (or attractive) potentlal relatlve to the
aperture grid. If the collector is repulsive with respect to the aperture
grid, the current is reduced, and the: shape of -the curve of collected
current versus repulsive collector potential depends on the distribution
of normal components of velocity at the aperture surface. In the experi-
mental situation of the circular planar probe geometry, it is particularly
convenient to place ‘a repulsive collector (with various screening grids) '
behind the aperture .grid, and thereby analyze the current for .informa-

tion regarding'the-velocity distribution at infinity.,

The theoretlcally expected current to the collector may be a
computed by trajectory summations similar to (4—3) and (4 8) It 1s more
convenient for this problem to use cyllndrlcal polar or carte31an coor—
dinates than spherical polar coordinates., Thus, letting the normal
direction define the z-axis of the'COordinate;syStem,>We may obtain ari
distribution in z-components of velocity v, by integrating over the v
and B (or v, and Vy) coordinates, where/vp is the projection of ; on the
x~y plane, i.e,, the "perpendicular" component of velocity defined by
vp2= vxz + vyz, and B is the azimuthal angle of the plane containing V.

Thus, the volume element in (2-2) becomes
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3 >
d” v = v, dvp ds dv, (6-1)

and, assuming a streaming Maxwellian velocity distribution at infinity
as defined by (2-3), the current density integral of (3-12) may be

expressed as(assuming $ < 0)

[ [ fdx se dx se™° (6-2)
¢ -2>0

where

X=mv 2/2kT, Z:zmv 2/2ktT, 3§ =n &I/2mi’?  (6-3)
p Z o o

w? = E+ ¥ - 2872 M cose_ Sec, III(3-8)

E=X+2+¢ (6-5)

and M and ¢ are defined in (3-9). The function § is a Heaviside function,
as in (4-2). The lower limit on the X-integration in (6-2) is, in each
range of Z, such as to correspond to vanishing total energy at infinity.
From the form of (6-2), we .see that the distribution in kinetic energies
Z associated with the z-components of velocity at the aperture grid is

defined by
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2T o
. ~ , 2
4 (J-) - -g—% dx se ¥ (6-6)

o Max(0, -¢ -2)

The distribution function (6—6),Whiéh will be simply referred
to here as "dj/dz", is discussed in Ref. 2 for the central point (i.e., the
B-integration gives unity). For the Mach. zero case, if we assume § = 1

for all X (no "intersections" in the sense of Ref. 2), then

]
o

4 i - -
az (jo ) for Z < -¢ _ ‘(6 7),

= e;z ¢ for Z > -¢ h k (6-8)

(2)

Equation (6-8) suggests a Druyvesteyn relation o Lf the collector is at.
a repulsive potential A with respect to the aperture, the collected current
density at a point is the integral of (6-6) from Z = A to Z =, Thus, if

6§ =1, (6-7) and (6-8) yield the "retarded" collector current (A > 0):

Al a4 )

. 4 11

o . dZ (' ) dz
. A 0 . N
=1 (A+¢) if A+¢ <0 o (6-9)
R CRY , if A+¢>0 (6-10)
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Noting that A + ¢ is the potential of the collector with respect to the
plasma, we see that the collector behaves like an ordinary repelling
probe (a Druyvesteyn relation holds) when it is repulsive with respect to
the plasma, despite the fact that there is an attracting grid before it.
On the other hand, the collector behaves like a small attractive spheri-
cal probe when it is attractive with respect to the plasma. That is,Athe

current rises linearly, according to (6-9).

Equations (6-7) and (6-8) may be considered as "ideal relation-
ships. According to the results presented in Ref, 2, (6-8) remains
valid for the actual circular planar probe, but (6-~7) is modified by the
effects of intersections. In the latter case, where Z < -¢, dj/dZ is
given by exp(—¢—Z-Xl(Z)), which is less than unity, instead of (6-7).
The function Xl(Z) is greater than -~¢-Z and is the equation of the
boundary curve in velocity (X-Z) space separating the domains of allowed

and excluded trajectories.

No analytical theory has been developed for off-center points,

and (6-6) must be evaluated by trajectory summation. We replace (6-6) by

| 1 1 ) |

d i)\ db [ __2dx g7 (6-11)

dz i, 2 a - x)2 - S
S S

TTEE L e

m k (- xk)
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where

T r) /A - x) +Nax©, - 62 (6-13)

mh, o e

m =
i

and X and bm are Gaussian quadrature abscissae‘in the'renge_(—},l). Also,
uim is defined by (3-8) and (6-5). If there is no preferred azimuthal
plane, we may replace m by m/2 in (6-14).  The Z-defivative of the total

current (dI/dZ) may be computed by a sum, over the area, identical to (4-8).

‘;‘ Table 11 glves some computed results for dJ/dZ as a functlon of

radius, and dI/dZ versus Z for the Mach zero P01sson field (Table 4).
The column denoted by "S" glves tragectory step-31zes in cm, and shows the
sen31t1v1ty of dJ/dZ to traJectory accuracy. The columns denoted by
dJl/dZ dJ /dZ, and dJB/dZ give the values ot dj/dZ at 3 radii s rz;
and Tqs respectlvely, which may be compared with dj/dZ at r = 0. Note
that dj/dZ falls off with radius; The range of Z is in the neighborhood
of the criticdl value 45.54, where ¢ + Z vanishes. A necessary condition’
for the validity of the Druyvesteyn relation is the validity of (6-8). ’
This implies that dj/dZ (in multiples of jo) must be equal to unity at.

= 45,54, for all r within the collecting radius. Table 11 shows that
at the largest radius, r = 1.48 cm, this is- probably not so. (Trajectory
step sizes smaller than 0,0125 cm were not used)t Morever, Table 11
implies that (6-8) is valid for Z in the vicinity of 45.54, within a small
collecting radius. However, for large values of Z, (6-8) probably holds
within a larger collecting radius, depending on the value of Z. More
computations are required to bear—'tl'lis,outo 'The entries at Z = 40, r = 0,
show the sensitivity of dj/dZ to trajectory accuracy (step size), in

accord with the exponential dependence on Xl(Z) in velocity space.

Calculations of dj/dZ versus radius are unfortunately not

available for the Laplace field, for comparison. Calculations at the



(2), however, show less sensitivity to tfajectory,accuracy
than those in the Poisson field.

central point
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VII. THE ISOLATED SATELLITE, CENTRAL CURRENT IN TLAPLACE FIELD,

The calculaﬁions described in the preceding sections are’based
on an infinite-plane model for the satellite. In order to determine the
effect of finite satellite size, the satellite was assumed to have the
form of a truncated cylinder, at the plasma potential, with the probe disc

embedded in one of the circular end-caps. (See Appendix A.)

The difference equations for the isolated satellite are dis-
cussed in Appendix A. Figure A-2 illustrates the type of grid used. The
Laplace field was computed with a dipole-law condition at the grid boundary.
(If the satellite has a net charge, the appropriate condition would include

a monopole term,)

The central current density was computed for a number of cases
involving a streaming Maxwellian with arbitrary streaming angle. Since
the calculation of the current collected by a finite area involves a two-
dimensional area integration when the Mach vector is at an angle with
respect to the probe normal, a considerable computational saving in. time
results from evaluating only the central current density. Based on the
infinite-satellite results, the central current density represents the

collected current to a good approximation, especially in a Laplace field.

Table 12 presents several current-voltage characteristics for
the central current density, with-various values of M-(Mach number) and
Yy (Mach angle). It is interesting to compare M = 1,414, y = 45° with
M=1, y = 0°, For an infinite-plane (one-dimensional) probe, these curves
would be identical, but the slope of the current-voltage characteristic
at (l.414, 45°) is, due to 3-dimensional effects, almost twice as great as
that at (1, 0°)., For numerical consistency, the values of the current at
¢ = 0 for these two cases, namely 3.54 and 3,62, respectively, should be
both equal to 3.64, Thus, the error in the current is of the order of a
few percent. Similarly, the cases (1, 90°) and M = O should give equal currents

¢ = 0, namely, 1.0, The actual values, namely 0.980 and 0.999, again

.= 30 -



indicate errors of the order of a few percent. It is also interesting
that increasing the Mach number from M = 1 to M = 1.414, at y = 45°, pro-

duces relatlvely small changes in the current.

The method used for computing the central current densities:in;
Table 12 is radically different from that used in the infinite—sateilite
case in that an attempt is made to determine with high accuracy the
boundary in velocity space, For each energy in the energy sum (Appendix B
or Equafion'(4—3)), the critical polar angle is found by a systematic
search whereby the interval containing the critical angle is successively
reduced. Once the critical angle is found, the energy sum (e.g., in (4-3))
can be performed over the occupied range alone, thus avoiding the numerical
disadvantage of haVing to integrate through a step-function where the
position of the singularity is not known. It has been found that con-
siderable trajectory accuracy is required if one is to save computer time
and use as few trajectories as possible. To obtain the results shown in
Table 12, only 8 energies were used. The figures in parentheses in the
M

0 column represent calculations with improved trajectory accuracy.

According to Table 12, the current density at ¢ = -45.54, M =1,

y = 0°, is 82.4, by interpolation, in multiples of the current at zero
potential and Mach zero. It is equivalent to 22.6 in multiples of the
current at zero potential and Mach 1 (factor 3.64). In Table 3 (Sec. IV),
the cufrent et Mach 1, in multiples of the current at zero potential and
Mach 1, is 15.6, These two numbers should be identical, but they are.

obtained‘by using different methods and different numbers of trajectories.

-With respect to computing efficiency, it is not yet clear whether
the search method is superior to the "old" method of straight summation

(across the singularity). More research is required on this point.
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VIII. PHOTOELECTRIC CONTRIBUTIONS

The isolated satellite program was mbdified to allowAthe'calcu—
lation of contributions to the ceﬁtral current densify due to photoeleétrons
or secondary electrons, Whereas'(3—12) was used (Sec. VII) to calculate
the cﬁrrent density due to a Maxzwellian at infinity, (3-13) must instead

be used for electron currents from the satellite surface.

For the monoenergetic electrons from the satellite surface,

(3~13) becqmes

(g-) coso sina do dB (8-1)

ig = a- Q/Eo) Jso'ts’ T kS

S (hemisphere)

where ¢ is the probe potential relative to the emitting (satellite) surface
potential, E_ is the singular kinetic energy of the emitted electrons, and
jso(?é)‘ is the normal component of the current density of emitted parti-
cles at the point ?S where the trajectory terminates (originates). Clearly,
(8-1) includes only those trajectories which connect the probe with other

portions of the satellite surface,

Consider photoelectrbn cohtributions'alone; Secondary electron
currents may be computed in very similar fashion. Let ?S be the solar
angle with respect to the probe normal (satellite axis). Thus g = 0°
denotes solar radiation parallel to the probe axis and incident normally
on the probe; the circular (top) end-cap of the satellite in which the
probe is embedded also has .solar radiation incident normally at all points,
whereas the rest of the satellite receives no radiation. For Y = 90°,
only (one-half of) the side surface of the satellite is illuminated. For
Yo = 180°, only the bottom end-cap (away from the probe) is illuminated.

- ;
We assume that jso(rs) is proportional to the cosine of the angle between
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the direction of incidence of solar radiation and the direction of the

>
surface normal at rs.

In the axially symmetric Laplace field, every trajectory passing
through the central point of the probe lies in a vertical plane containing
the probe (and satellite) axis. That is, the azimuthal angle B for the
velocity vector of a trajectory at the central point also defines the
azimuthal position of the point ;; on the satellite where the trajectory
terminates. We let the solar direction define azimuth zero. Then, for
given values of o and B in (8-1), we follow the trajectory until it reaches
the poini gs on the satellite swface. The formula for jso (?S) dépends on
whether T is on the top (probe), side, or bottom satellite surfaces, and

may be expressed as:

Max(O, cosys) (top) (8-2)

jso(rs)/jo -
= Max (0, -cosys) (bottom) (8-3)
= sinys cosB (side) (8~4)

where jo is defined as the emitted photocurrent density for normal solar
incidence (which may also be a function of ;s)' The right-hand sides of (8-2) and
(8-3)-imply that non-zero contributions occur only if Yg < 90° (top

illuminated) or if g > 90° (bottom illuminated), respectively.

“Thus, assuming a, defines the critical polar angle such that all
trajectories with o > dc return to the satellite, we express (8-1), in view
of (8<2) - (8-4),as:

3 fi, = - ¢) d(sine) Max (7, 0) 6 (8-5)

sinza
c
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where ¢ = @/Eo,

W= cosy_ _ (top) . ~ (8-6)
= ;coéys : | , (bétténﬂ _ (8=7)
=’(sinyé)/n ; (si&e) ’ . (8-8)

if § = 0 if the trajectory terminates on the probe surface. In Gaussian

summation form, (8-5) becomes

, . 2

i (1 - sin ac)

3“ 2 (1 - ¢) 5 E:Hh Max (Wh, 0) Gn (8-9)
o .

n
where
. 2 _1 1 _ . 2 _

(sin a)n =5 (1 + an) + 2.(l an) sin ac (8-10)

and Hn and a are corresponding Gaussian coefficients and abscissae.

In the running of trajectories in the Ldplace field, the field
defined by (4-1) is scaled so that ¢ appears on the probe surface (that
is, E 1is the scale of energy). Velocities are defined in multiples of
2k /m

1 - ¢)l/2, and the initial polar angle o for the n-th trajectory is obtained

, so that the initial dimensionless velocity magnitude is

from (8-10)., Some computed results are given in Table 13, for a fixed probe
voltage of 15 volts (negative potential enmergy for electrons), and electron
energies of 0.1, 1.0, and 5 volts. Thus, the scaled dimensionless

potential energy on the probe was ¢ = -150, ~15, and -3, respectively.
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In the upper half of Table 13, calculated current densities are
given, for solar angles 0°, 35°, 45°, and 90°, The currents fall off
with increasing solar angle. AtyS = 90°, there are no contributions,
since all trajectories terminate on the non-illuminated upper (probe)

surface, and none on the illuminated side surface.

The terminal points of a group of trajectories which can contri-
bute are shown in the lower half of Table 13, for each energy. The criti-
cal angle o increaigs with electron energy. The quantities X represent
the x-component of L The negative value of Xy for the first entry under
Eo = 0.1 volt occurs because the electron has reversed the direction of
its horizontal component of velocity and passed across the axis before

returning to the satellite,
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APPENDIX A. DIFFERENCE EQUATIONS

A.l1, The Infinite-Satellite Equations :

When the Poisson Parfialkdiffeféntial'equation in cylindriéél
polar form is replaced by difference eqﬁétiéhs in an axially Sjmmetric .
problem, a grid in r-z space is defined (r is the cylindrical radial
coordinate, and z is the axial coordinate). The values of the potential
(¢) at the grid points, or nodes, are given by the solution of N simul-
taneous equations in N unknowns, where N is the number of nodes.. In the
case of a "floating' boundary, some of the nodes are on the boundary. The
grid in the present program is bounded by cylindrical surfaces (of
constant r and constant z), where the potentials are assumed to obey a
dipole law. An exception is the case of a zero-potential boundary

(Appendix E),

Figure A-1 illustrates one of the grids employed for the infinite-

satellite problem. There are 6 intervals in r and in z, with r, defining

the ;adial boundary, and z4 defining the axial boundary. There7are 42
unknown values of potential above the satellite. Of these, 12 are at
boundary points where the potential floats, and 5 are interior axial
points. The probe surface is defined by Ty Tos and ry at z; = 0. The
probe potential is ¢po The satellite surface, where ¢ = 0, is defined
by r, - r, at z; = 0, The potential is defined to be ¢p/2 at the probe
radius rge On the boundaries, the potentials are assumed to satisfy the

linear law:

%§.= g%-= ad on z~boundary (A-1)
%%—- g%—= Bo ‘on r-boundary (A-2)
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where n is the outward-directed normal. For the dipole,

0= 2% - 12/ (£? + 25 /2 (A~3)

B = - 3r/(r2 + zz) (A-4)

The Laplacian operator may be differenced directly. However,
symmetric equations are guaranteed if one differences instead the equi-

valent divergence theorem (Varga, 'Matrix Iterative Analysis'), namely,

[o-efff e

where p is the charge density, dt is an element of volume, dX is an
element of area of the surface I surrounding the volume T, and 93¢/3n is

the normal component of grad ¢ dat dX., Equation (A-5) is applied to a
small volume surrounding each grid point in Fig. A-1l. Each small volume is
a torus of rectangular cross-section. There are 6 types of equation,
exemplified by the points numbered 15, 18, 21, 36, 39, and 42, their

associated volumes being marked by shaded boxes.

Each point, axial points excepted, is associated with a volume
which has 4 surfaces, e.g., the north, south, east, and west surfaces.
Axial points do not have "western" surfaces, The difference equivalent
of (A-5) is, for completely interior points (neither on the axis nor on

the boundary, such as No. 18):

Ay (3¢/¢m)y + Ay (3¢/0n)g + AL (3¢/om)p + A, (3¢/0n), = - ot (A-6)
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where (3¢/8n)N is'appfoxiﬁétedjﬁﬁ'(éN'— ¢) / [zN - z|, where ¢ is the
central potential (at the point on which the difference equation is

centered), ¢ is the potential of the neighbor to the north, énd»zN is

N
its z-coordinate; and similarly for S, E, and W. In (A-6), Fhe quantities

A, A,, A, and Aw are the areas of the 4 surfaces, defined By taking

] s
szctigns ﬁalf—way between grid points. TFor axial points, the term with
subscript W is absent. For points on the z-boundary, the term with
subscript N is reblaced by ANu¢,‘where AN‘is the northern area containing
the central point. For points on the r-boundary, the term with subscript
E is replaced by‘AéB¢, where Aé is the eastern surface-area containing
the central point. Finally, for points just above the probe and satellite

surface, the term with subscript S will contain the known potential.

To illustrate how the equations are formed, we obtain from (A-6)

the following equations for the exemplary points in Fig. A-1.

Point 18 (interior)

Cy 995 1 Cg &19 + C ¢19 + Cyy 415

- (CN + CS‘+ACE + CW) ¢18 == 018718 (A-7)
where
Cy = Ay / (25 —‘24) (A-8)
b= @) [oeg +xp? - @ +2)%1 @)
CS = AN / (z4 - z3) ) (A=10)
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Point 15 (axial)

where

[@]
]

E AE/(r5 - r4)

>
L]

B (n/2) (r5 + r4) (z5 - z3)

Cy = Ayl &y = 13)
by = (@/2) (x, + 13 (?5 - 2,)

T

18 = (25 = 23) Ay/2

Cy $9g F Cg 85 * Cp 444

- (Cy + Cg + Cp) 975 = = P15735
Cy = Ay/ (25 = 24)
2
AN = (m/4) r,

Cq = AN/(z4 - 23)

(¢}
|

g = AT,

o

(r/2) r, (z5 - z3)

T

15 = (25 = 23) A/2
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(a-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)



Point 21 (r-boundary)

Cy 928 * Cg 914 * Cy 929

— — ' -_— —
(Cy + Cg + Gy — BAR) 05y 1721

where

@)
I

N = A/ (25 - 2,)

i
|

= @t - g+’

Cg = Ay/ (2, = 23)
t Aé = mry (z5 - 23)
Cy = &/ (r; = 1g)

Ay = (/) (x, + 1) (2 = 2,)

Ty = (zg - z3) AN/Z‘

Point 36 (z-boundary, axial)

Cg $39 T Cp 37

= (Cg + Cp = aBg) 50 = = P3eTqg
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(A-23)

(A-24)

(A-25)

(A-26)

(A-27)

"~ (A-28)

(A-29)

(A-30)

(A-31)



where

(o]
#

>
0

[
]

Ag

T

Point 39 (z-boundary)

where

36

Agl (27 = 2¢)

(n/4) £,”

Ag/ty

(n/2) £, (24 = 2()

(Z7 - 26) AS/2

Cg ¢35 + Cp 940 * Cy 93

O
§

2>
]

[}
L]

= (Cg + Cp + Cy = 0Ag) ¢35 = = P3qT3g

= Ag/(z; - 2()

/) (g + )% - @, + 1)

Ap/(rg - 1,)

= q (r5 + r4)(z7 - 26)

- 41 -

(A-32)

(a-33)

(A-34)

(Ar35)

(A-36)

(A=37)

(A-38)

(A-39)

(A-40)

(A-41)



O
]

W A.‘d/ (r4 - r3) (A“AZ)

Aw

n (r4 + r3)tz7 - z6)x ‘ ' (A-43)

T39 = (Z7 - 26) AS/2 ' : (A—44)

Point 42 (z-boundary, r—boundary)

Cg ¢35 + Cpp sy

= (Cg + Gy — oAg = BAR) 45 = = 04774 (A-45)
where
Cq = AS/(z7 - z6) | (A-46)
A = (n/4) [br.2 = (r, + 1,)%] (A=47)
g T A\ 7 77 %6

Aé = mr, (z7 - z6) (A-48)
Cy = Aw/(r7 - r6) (A-49)
Ay = (n/2) (xy + 1) (25 = 2g) - (A-50)
Typ = (z7 - zg) AS/Z . ' (A-51)

It is clear that the N x N matrix of coefficients will be

symmetric, since the coefficients of the off-diagonal elements are simply
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the areas of the interfaces divided by the length of the segment joining
the adjacent grid points. It is also clear that where a and B are both
negative, which is the case for a reasonable boundary shape, the matrix,

is diagonally dominant. This is important for iterative solution methods.

For grid points in the row next to the probe and satellite
strfaces, such as points Nos. 1-7 in Fig. A-1, the off-diagonal terms
with subscript S will be absent from the left-hand side of the equation,
but will instead be added to thé right-hand side as known.quantities.
For the Laplace problem, when p vanishes, these latter contributions

constitute the only source of the potential.

In the dipole-boundary calculations reported in the main text
for the infinite-satellité case, the equétions for the axial points were
based on a quadratic relation rather than equations typified by (A-16) -
(A-22), for point No. 15. Thus, densities were not required for these
points (Sec, V), and therefore the Poisson potentials do not contain axial
density information. (The zero-potential-boundary calculations of
Appendix E do utilize the axial point equations of this Appendix.) The
error resulting from the lack of axial density information is not known;
the quadratic relation has merit in that it tends to smooth out potential
variations due to computational "noise'", and has been suggested by
Collatz ("The Numerical Treatment of Differential Equations'). The
equations used for the infinite-satellite problem included additional
equations at the boundary points. These involved the tangential com-
ponent of the potential gradient. The additional equations therefore
resulted in an overdetermined system, to which solutions were obtained in
a least-squares sense, It is felt, however, that the equations of this

Appendix, which have been recently developed, are preferable.
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A,2, The Isolated-Satellite Equations .

Figure A-2 illustrates the type of grid used for the finite
satellite having the form of a truncated cylinder. The geometry is still
cylindrical polar, but the space of the problem is conveniently separated
into three regions, i.e., North, East, and South, illustrated by 24 points
in Fig. ArZ.b Each of the three regions may then be described by rectan-
gular grids similar to those in Fig. A-1l, except that the z-coordinates of
the grid lines are numbered in order from top to.bottom rather than from
bottom to top. The probe is embedded in the North circular end-cap of the
satellite., The probe and satellite potentials are,¢p and zero, respectively,

as before.

The equations are derived in a manner identical to those of the
previous section. The shaded boxes in Fig. A-2 represent, as before,,
toroidal boxes of rectangular cross-section. Point No. 9 is;an interior
point similar to No. 18 in Fig. A-1, and points Nos. 1, 3, 5, 6, and 14
correspond similar to points Nos. 36, 39, 42, 15, and 21, in Fig. A-1,
respectively. There is an additional z-boundary, on the southern side.
At this surface, the relation between 3¢/dn and ¢ is 3¢/dn = - ad, with o
given by (A-3). The equations are obtained from (A-6), as before; one.
notes, however, that whereas terms with subscripts S appear in the
equations for points along the northern z-boundary, corresponding

terms at the southern z-boundary have subscripts N.-
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A.3- Solution of the Linear Equations

Considering the charge densities as known along with the satellite
and probe potentials (as in one cycle of self-cotsistent iteration), the

equations given above may be expressed in the matrix-vector form:

Ag =k (A-52)

Here, A denotes the matrix of coefficients, 3'denotes the N~dimensional
solution-vector, and k denotes the known vector. This system can be solved
either by direct or by iterative methods. The direct method may be quite
efficient, despite large values of N, since A can be partitioned in block-
tridiagonal form and solutions obtained by methods based on tridiagonal
matrices (by factorization, as discussed by Varga in "Matrix Iterative
Analysis")., This methed involves rather complicated programming but does

not depend on the properties of the matrix.

On the other hand, since the matrix A is symmetric and diagonally
dominant, over-relaxation methods can be used (see Varga) which are
extremely simple to program, Briefly, the over-relaxation algorithm may

be expressed by the equatioms: -

, i-1 N ,
n+l ‘n+l n
—a, .= ) a6+ ) a b, (A-53)
e j=1 M3 jeitl I
n+l n+l n
o =wy, HIL-w) o (A-54)

In these equations, aij denotes the (i, j)-th element of A, the superscipts
n and n+l denote the n-th and (n+l)-th iterates, respectively, and w is

the relaxation parameter which is assigned a value between 1 and 2.
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For a 636-point problem involving the Laplace field,where the
initial guess was $i= 0, the number of iterations required to obtain con-
vergence within 1 part in 105 was gfgater thén 2060 for w‘# 1.0,‘1733 for
w= 1.2, 144 for w = 1.9, and infinity for w\= 2,0, This shows the\ﬁital
role played by w., At w = 1.9, which is apparently the optimum value; only
about 20 seconds were required on the CDC-6400 computer. This is clearly
competitive with 30 seconds for the direct solution, which required a

great deal longer to program and de=bug.
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APPENDIX B. TRAJECTORY QUADRATURE SUMS

The triple. integrals for the density and the current density
components, defined. by (2-1) and (2-2), may be expressed in the polar

form
i
2E \3/2
= %_' (—EQ) ffff(E,a,B)(E—cb)l/z dE sina do dB (B-1)
and
j= ffff v, &3
2E 2
= ; ffff(E,a,B) (E-¢) dE sino coso da dB (8-2)
m
with
v
Bt (8-3)

where Eo is a characteristic energy, E denotes the dimensionless kinetic
energy of the particle at its source, ¢ denotes the local dimensionless
potential energy of the particle (relative to the source), and o and B
denote the angular coordinates of the local velocity vector, namely, the
polar angle with respect to an axis and the azimuthal angle with respect
to a plane, respectively. The angular integration ranges are defined to
be only over those values for which trajectories commnect with the emitter,

e.g., infinity. Defining the polar axis to be in the direction of. the
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normal to a collecting surface, as in Fig. 2, the component of current
density normal to the surface is given by (B-2). The order of integration
depends on the function f(E,d,B). In the usual probe theory, the angular
integrations are performed first, and the energy last. 1In special situa-
tions, such as photoelectfic emission, howeVer, it may be necessary to -
perform the angular integrations last., (See 3-10) and (3-13).) 1In the
following, the usual order will be assumed for illustration, without

affecting the general validity of the formulae.

In the o integration, the range is'm in (B-1), and /2 in (B-2).
In the energy integration, the range is'usuélly infinite. In order to

deal with this, it is convenient to transform the energy variable thus:

E= (1+A)/(1 -A4A) + Emin (B~4)

where A runs from -1 to 1 as E runs from its minimum value Emin to infinity.

The density and current density can be expressed in dimensionless

form by dividing (B~1) by

2E \3/2
—59) J(/J[f(E,a,B)El/Z dE sino do dB (B-5)

(o]

o]
i
N

2E
o

32 |
L:;—) - £ BV gk (B-6)

and (B-2) by
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e
L

2E 2
= =2
) m2 ‘[]}rf(E,a,B) E dE sino cosa do dB (B-7)

2 Lo <]
i f (E) E dE (B-8)

o

where (B-6) and (B-8) imply isotropic distributions (which are less compli-

cated but not essential). Then we have

n__ 1/2 sino do dB _
B no = J(/J(F(E)(E-¢) dE B P (B-9)
and
g;_=.ji/J(G(E)(E_¢) dE sino. cisa do, dB . - (B-10)
o

where F and G have the non-dimensional definitionss

o]

F(E) = £(E) + | £®) EV/? 4m (B-11)

and'

o0

G(E)

f(E) + | £(E) E dE (B-12)
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In (B-9), o and B lie in the ranges (0,w) and (O, 2n), respec-
tively. With (B-4) and the transformations

cosa = B (B-13)
and

B = w(C+1l) (B-14)

we may express (B-9) in the form:

5. Ir EW] E@-¢112 0 Qé—éﬁ—ig (B-15)
(1-4)2

where § is the unit step-function.

In (B-10), o and B lie in the ranges (0,7/2) and (O 2m),
respectively. With (B-4), (B-14), and the transformation

sin’a = (1+B)/2 (B-16)

we may express (B~10) in the form:

1 -1 1
JI—=[ f f 36 [E@] [E@)-¢) ° 9498 LC (B-17)
i, (1-A)
-1 7-1 -1

where 6 is the unit step-function, as usual.
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Now we have the integrals, (B~15) and (B-17), in the form

suitable for Gaussian quadratures, Let Aj’ H, be the j~th abscissa and

3

coefficient in a Gaussian quadrature of order N. There are N such pairs.
Then Al’ g eeee AN 1ie in the interval (-1, 1), and the sum of the Hj
is 2. TFor flexibility, we divide the A-range into Mi sub-intervals, and
apply a Gaussian quadrature of order Nl to each of these. We divide the
B-range into M2 sub-intervals and apply a Gaussian quadrature of order
N2 to each of these, We divide the C-range into Mé sub-intervals and
apply a Gaussian quadrature of order N3 to each of these., Then either

(B-15) or (B-17) may be approximated by the 6-fold sum:

1 1 -1
[ff T (A,B,C) & dA dB dC
21 J-1 -1

BRSPS e
M. M, M D) HY o BT OHDT T(ULV,W) 8 (B-18)
172 73 K=l k=1 J=1 j=1 I=1 i=1 J

(o]
]

R

where § is the unit step-function, and U, V, and W are defined by

U= (Ak -1~ Ml + ZK)/M1 (B-19)
V= (Bj -1~ M2 + ZJ)/M2, (?—20)
W= (Ci -1 - M3 + ZI)/Mé (B-21)
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: 3. 1€2)y : 1y .. .. . ) .
and (Ci, H i R (Bj, H 3 )y and-(Ak, H’k ) are-associated Gaussian abscissa-
coefficient pairs. '

In all of the calculations reported here, I ﬁéedkMi'= 2,

M, = My = 1. In the deﬁsity caiculationé, N, =N, = Né = 8. In the

most accurate current density calculationé, for the central'point,

Nl = N2 = 32,

] Based on the experience of the present investigation, I
recommend the use of low-order Gaussian quadratures, with large numbers
of intervals. This should be most efficient for the integration of a

step—function integrand. In the case N, = N2 = N3 = 2, the coefficients

1 -1/2
1, and the abscissae are A; = -A2 = -3 .

For the current-derivative dj/dZ, which requires a two-

are Hl = H2

dimensional sum as shown in Sec VI, a two-fold anélogue of (B—l8) may

be employed.

Each term in the multiple sum (B-18) corresponds to a single
trajectory. This trajectory is defined by the local position and velocity.
The local velocity components may be obtained in cartesian form from
(B~4), (B-14), and either (B-13) for density or (B-16) for current.

Thus, the dimensionless cartesian components are given, for density and

current, respectively, by:

v /v = (1= VO cosr@ + W) or (@ +V) j2)L/? ;oén(l + W) (B-22)
v lv= Q- V512 sinn@ + W or (@ + v)/? sinn@ + W) @-23)
v =V or (@-w/t? | (B-24)
v=[@+0)/1-0)+E_ - 011/? o (B-25)

where U, V, and W are defined by (B-19) - (B-21).
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APPENDIX C. EQUATIONS OF MOTION. TRAJECTORIES.

If X, Y, 2, and Vé?Vy, and V, denote dimensional spatial and
velocity cartesian coordinates, respectively, and if T and ¢ denote
dimensional time and potential energy, respectively, then Newton's

equations of motions are:

d X 1l 3¢
L U i 4 (¢c-1)
de m 93X
2
d’Y 1 23¢9
—_—= == (c-2)
de m 3Y
2
aT n

where m is the particle mass,

Now choose ‘the following units:

'Ro = unit of length
To = unit of time
Eo = unit of energy
V. =R /T = (2E /m)ll2 = unit of velocity
o o' "o o

and let the following variables represent dimensionless quantities:

Xy ¥y 2 = X/Ro, Y/Ro, Z/Ro (dimensionless position)

t T/To (dimensionless time)

]

) <I>/Eo (dimensionless potential energy)

Vo Vy’ v, = Vx/vo’ Vy/Vo’ Vz/Vo (dimensionless velocity)
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Then the equations of motion have the dimensionless form:

d™x% 1 3¢ . ;
—m = (C-4)
dtz 2 ax R .
2
Ei._Z.:__.].:it (C-5)
dt 2 3y
2 o
g‘....%.:-!‘._ai (C—6)
de 2 3z

In the Laplace prbblem, the unit of length is arbitrary, but in
the Poisson problem, it is most conveniently set equal to the Debye length

(kT/énnoez)l/z. The unit of energy is kT, and the unit of velocity is

(ZkT/m)l/z, in the calculations reported here for the Maxwellian distri-
bution. For each trajectory, the initial velocity components are usually

specified by the quadrature indices, as in Appendix B.

The equations of motion (C-4) - (C-6) are integrated over
successive time intervals of length At to obtain new values for the
coordinates x, y, 2z, and the velocities-%, §, and z, During each time
interval, the accelerations, i.e., the potential gradient components, are
assumed constant, Thus, the changes in ﬁ, Vs, é, and ﬁ, §, and z are

given rather crudely by truncated Taylor series, namely:

Ax

% At + ;O(At)Z/Z | c-7)

by = y At +y. (ae)7/2 (c-8)

S



bz = & At + z_(at)%/2 (C-9)
a% = x At (C-10)
By = ;oAt (c-11)
Az = ZoAt (c-12)

where the zero-subscripts denote the values of the quantities at the
beginning of the time interval. The use of a crude rather than a sophis-
ticated integration scheme is based on the fact that the potential distri-
bution is given in the form of a grid and the gradients are therefore
discontinuous across the grid lines., A high-order scheme is defeated by
these discontinuities and its computational expense appears to be unjusti-
fied.

The required gradient components in (C-4) - (C-6) are obtained
by double linear interpolation within the boxes of the two-dimensional
array in r and z, as follows. Let ¢(i, j) denote the value of ¢ at the
point (zi, rj). Assume that z and r are located in the ranges
-z and

i+l i+l
- rj be denoted by DZ and Dr’ respectively, Then the interpolated

z, <z <z, ., < < i z,
i 3 and rJ <r rj+1, respectively, and let

Tyl
values of 9¢/3z and 3¢/9r are given by:

9¢/0z = [o(it+l, ) - ¢(i, DI/, + (r—rj)Q/(DrDz) (c-13)

9/or = [¢(i, j+1) - ¢(i, 1)]1/D_ + (2-2,)Q/(D.D ) (C-14)
where

Q = ¢(i+l, j+1) ~ ¢(i, j+1) - ¢(i+l, j) + ¢(i, ) (c-15)
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The cartesian gradient components 9¢/3x and 3¢/dy are then given by:

3d/9x = (x/r) 3¢/or - (c-16)

(y/r)fa¢/ar | (Cc-17)

H

3¢/ 3y

The above interpolation scheme is easily modified to allow for
a grid in which increasing values of i are associated with decreasing

values of z, such as was employed in the isolated satellite pfogrém.

The‘trajeétory accuracy is related- to the length of the step,
since the gradient is not.constant during a step. The type of step
control which was used during these investigations maintained an approxi-
mate equality of arc length per step throughout the trajectory.: If As is
the desired controlled value of step length, then setting At equal to
As/(io2 + §02\+ 202) 1/2 accomplishes this control. This assumes that
the accleration term in.the equations is always dominated by the velocity
term, The maintenance of equal arc length per,step is Wasteful,whowever;
in the outer regions of the potential grid, where thé potential gradients
are small. A better procedure would be to use ene;gyfconservafion '

control.

A convenient indicator of the accuracy of a trajectory is the
degree to which energy is conserved. Numerical errors occur because the
force changes during At, and equations (C-7) - (C-12) result in an energy

|AE| /E is the desired maxi-

loss or gain at the end of the step. If ¢
mum. relative energy loss or gain per step, a useful and fairly conserva-

tive control would be given by

At = Min (Tl, T (C-18)
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where

T, = cE/(pq) (€c-19)
T, = B 2/p (C-20)
p = |3¢/0x| + |3¢/dy| + |2¢/0z] (c-21)
a= x|+ Iy i+ lz] (c-22)

This type of control has the advantage of allowing the step size to be
large in regions of weak forces, while '"tightening up" in regions where
the force is strong. Thus, a large number of step size tests (see

Appendix E, for example) can be eliminated,

In order to determine the '"fate" of a trajectory, it is
followed until it either returns to the satellite surface, or passes
through the outer grid boundary. If it reaches the boundary, it is
considered to have escaped, However, on reaching the r-boundary in the
infinite-satellite case, the velocity vector must be extrapolated (zero
field) to see whether the particle escapes or mot. This amounts simply

to examining the sign of v
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APPENDIX D, ITERATION PROCEDURES

According to Sec., V and Appendix A, the set of Poisson difference
equations representing the Poisson partial differential equation on a grid
may be expressed as a matrix-vector equation for an N-component .solution

vector 3 as follows:
=7 @ (p-1)

In (D-1),L is the Laplacian matrix operator, and ¥ is the corresponding net
negative charge density vector, each component of which depends in general
on more than one component of 30 Given a computational algorithm for finding
F when $ is given (Appendices B and C), we must use an iterative technique

to obtain a self-consistent solution,

The simplest iteration, where n denotes the iteration index, is
the direct one, namely,

L =F @) S (0-2)
where 30 might, for example, be the Laplace solution. The direct iteration
defined by (D-2) may converge or\diverge, depending on the position of the
boundary. In the present investigation, it has been found that if the
boundary of the grid is near the probe, the direct iteration will converge,
but if the boundary is moved out beyond a certain point, the iteration will
diverge. We define that point as the "critical distance'". 1In order to
represent a boundary condition at infinity, the boundary must be reasonably
far from the probe; actually, it must be sufficiently far that further
increases in distance do not affect the computed current (that is, the
current becomes stationary). Unfortunately, the distance beyond which the

current is stationary is greater than the critical distance for the iteration

scheme (D-2).
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It has been found possible to increase the critical distance by
using a more sophisticated iteration. Thus, an important improvement is
afforded by

L > _ oz
®nt1 = Foa1 (D-3)
where

-> > > >

Fn+l =q F (¢n) + (1 - ) Fn (D~4)

The implication of (D-4) is that the next charge density vector to
be used consists of an average of (a) the charge density vector resulting
from the latest available potential vector, and (b) the charge density vector
which was the source of that potential vector. The iteration of (D-3) and
(D-4) is equivalent to a heat-diffusion problem with the iteration index n
playing the role of time. The reciprocal of a plays the role of a damping
constant. This may be seen by re-writing (D-3) and (D-4) in the "relaxation"
form:

Flog-F o=olF () -14] (D-5)
Thus, the smaller is the value of o, the smaller is the change from iteration
to iteration, corresponding to large damping. The mixing or coupling is
applied to the charge density, according to (D~4). Alternatively, of course;
it may be applied instead to the potential.

In the Poisson calculations reported in Sec. V, the scheme of (D-4)
employing o = 1/2 worked well when the z-boundary was within 1.5 probe radii,
converging within about 6 iterations. However, when the z-boundary was at
3 probe radii, it was necessary to reduce o, Actually, o was defined as 1/n,
i.e., decreasing with increasing iteration number. At 3 probe.radii, con-
vergence was achieved within about 12 iterations. A small constant value of

a, perhaps 1/10, would probably also have assured convergence.
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APPENDIX E. ZERO-POTENTIAL BOUNDARY

A coarse grid with 6 unknown values of potential was used for
the Poisson zero-potential boundary calculation, in order to prove that
the boundary condition is irrelevant (for current)‘when the boundary is
sufficiently far out. Since this calculation exemplifies all of the
Poisson calculations, and because the grid is small, it will be instruc-

tive and convenient to present the calculation in detail here.

With probe radius 3.33 cm, identical sets of values were
chosen for the radial and axial grid coordinates (infinite satellite,

Appendix A), namely:

r, = 0 oz < 0

r, = 3,33 z, = 3.33

r, = 6.66 2= 6.66 (E-1)
r, = 9.99 z, = 9.99

With a probe potential -45.54 in multiples of kT, the zero-order (Laplacian)
potential array was calculated, with zero oh the boundary, to be as given
in Table E-1:

TABLE E~1

Laplace Potential., &4 x 4 Grid

rl f 0 r2 = 3,33 r3 = 6,66 r4 = 9,99
‘z4 - 9,99 - 0 0 | o . 0
zy = 6.66 = 4,56 (#1) - 3.24 (#2) - 1,10 (#3) 0
z, = 3.3 ~lh4 (#4) - 9,04 (#5) - 1,97 (#6) 0
z = 0 ~45, 54 ~22.77 0 - 0
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This solution was calculated using a suitable modification -- actually a
simplification —- of the equations of Appendix A. Since the grid is
coarse, the potentials are approximate, but are probably not greatiy in

error.

Let the density at the 6 points, namely, (rl, z3), (rz, 23),
(r3, 23), (rl, zz), (r2, zz), and (r3, ZZ)’ be designatedby_nl, n,, 0j,
N, D, and o, respectively, These represent the 6 components of a
density vector, The numbers in parentheses in Table E-1 indicate the
geometricuordering of the positions. The potentials at the 6 points will
be similarly designated by ¢l’ ¢2, ¢3, ¢4, ¢5, and ¢6’ constituting the

components of a potential vector.

Using 16 values of k, 8 values of %, and 8 values of m in the
sum (5-3) of Sec. V, a sequence of step-sizes was employed to find the
optimum values. The following sequence of density vectors was computed

(at Mach zero) in the Laplace field, as a function of step-size:

TABLE E-2

Densities versus Step-Size

S = .4 S = .2 S=.,1 S = .054 S = .025 S(adopted)
n, .0955/.0076 .137/.0076 .179/.0076 ,179/.0076 .1
n, .175/.0373 ,208/,0373 .220/.0373 ,226/.0373 .05
n, .305/.244 .312/.244 .315/.244 .315/.244 2
n, .0623/0 .217/0 .280/0 .418/0 .598/0 .025
ng .292/0 .372/0 .416/0 .431/0 .423/0 .025
ng .325/.0610 ,363/.0642 .,376/.0660 ,379/.0666 .05
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In Table E-2 ,'the number‘fe the ieft/right side of each soli&us(/)Areﬁpesents
the density of attracted/repelled partlcles, respectively. The adopfed ;
step sizes are shown in the last column° Note that the repelled partlcle
densities are insensitive to step size. The attracted-particle den81ty

n, was most sensitive to step size, Although S = .025 does not represent

a small enough step for n, (attracted) to become stationary, it was felt

to be reasonably accurate in the interest of saving computer time.

An iteration was employed, such as descrlbed in Appendlx D,
with o = 1/(n + 2) and n denoting iteration number. The sequence of

potential iterates obtained is shown in Table E—3o

TABLE E-3

Potential Iterates

order = Oth 1&: 2nd’ 3rd _4th 5th " .6th
4 - 456 - 3.54 -3,29 -317 -311 -3.07 - 3,05
¢, - 3,24 - 2,36 - 217 =209 =204 =202 -2.00
4 - 1,10 - .642 - .652 - .625 - .615 - 613 - .610
0, -l4.4  -12.8 -12.4 -12,2 -12.1 -12.0 -12.0
’¢5 | -9.04 -7.73  -7.38 -7.24 =716 ~7.11 - 7.08
9 - 197 -1.18 ~-1.05 =-1.01 - .997 - .990 - .987

The sequence of density iterates (attracted/repelled) obtained

is shown in Table E-4,
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TABLE E-4

Density Iterates

Oth lst 2nd 3rd 4th Sth 6th

.179/.0076 ,215/.0276 .217/.0354 .218/.0400 .219/.0425_.219/.0441 .220/.0451
.226/.0373 ,256/.0900 .262/.108 .273/.117 .273/.123 .273/.126 .273/.128
.315/.244  ,315/.362 .350/.343 .356/.352 .356/.356 .357/.357 .357/.358
.598/0 .481/0 .590/0 .478/0 .478/0 .478/0 477/0
.423/0 L447/0 . .398/0 .404/0 .403/0 .402.0 .402/0

.379/.0666 ,376/.156 .369/.178 .363/.186 _.362/.188 .362/.191 .362/.192

In Table E-4, the Oth-order, lst-order, etc., demsities are com-
puted directly from the potentials under the corresponding columns in
Table E-3. The potentials in Table E-3, however, are calculated according
to the scheme of Appendix D, so that the actual densities used are linear
combinations of those in Table E-4, In fact, using o = 1/2, 1/3, 1/4,
etc,, when n = 0, 1, 2, etc., in Equation (D-4) of Appendix‘D, and with

fo = 0, we obtain (f = net negative charge density):

> 1 > > > > > >
E =27 [FG) +FG + ... FG,_p)] (E~2)

where f(?m) is obtained direcély from the m-th order column in Table E-4,
The n-th order potential ¢n is then computed directly from ﬁ# as given
by (E-2). Thus, $1 is computed using 1/2 F($ ), 32 is computed using

> > > 5 o
1/3 F(4_) + 1/3 F(§;), etc.

Finally, the central current density is given, as a function of
step size, in Table E-5. (Laplace potential from Table E-1, Poisson
potential from Table E-3).
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TABLE E-5

Current Density

Léglace - Poisson
§=.1 32.7 ‘ —
$=.05 33.5 31.3

S = .025 34.0 33.0

Hence, although there is a tendency for ‘the current to increase
with decreasing step size, it is clear that the current densities are-
quite close to the values given in Table 6 (see Sec. V), namely, 34.0

versus 35.5 for Laplace, and 33.0 versus 33.3 for Poisson
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APPENDIX F, NUMERICAL EFFECIS OF BOUNDARY .

The role played by the boundary condition was investigated

principally by calculating current versus boundary position.

In the Laplace case, with probe potential -45.54 kT at Mach

zero, the current was calculated for grids with increasing r-boundary

(fixed z-boundary) and for grids with increasing z-boundary (fixed r-

boundary). Table F-1 shows that the current is rather insensitive to

boundary position.

TABLE F-1

Laplace Current versus (r,z)-boundary

r/a

2
2.5

3

(z=3a)
I/Io

35
35

35

z/a

2
2.5

3

(r=3a)
I/I0

32
33

34/36

The pair of values 34/36 under the r=3a colummn at z=3a indicates the

variation resulting from using 6/12 intervals

in z, respectively.

In the Poisson case, with probe potential -45.54 kT at Mach

zero, the current was calculated with fixed r-boundary (r=3a), and increas-

ing z-boundary values.

with Ar = Az = a.
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Table F-2 shows the results using a coarse grid,



TABLE F-2

Poisson Current versus z-boundary

zfa = 1,5 2.0 2,5 3 - 3

I/Io 23 © 24 24 24 24 (Ar = Az = a/2)

The last column indicates that halving Ar and Az did not change the result

noticeably;

The above results suggest that the use of a finite z-boundary
results in an underestimate of the current. When the boundary is arti-
fically placed too near, the resulting potential falls off too rapidly
near the probe, causing a reduction (due to the increased field strength)

in the number of trajectories which escape to infinity,

One further numerical result which is consistent is the insensi-
tivity of the attracted-particle demsity at a point near the probe to
changes in the potential near the boundary. Consider, for example, the

3 potential distribuytions given by Table F-3,

TABLE F-3

Test Potential Distributions

A ' B : ' c

z/a r=0 a 2a 3a | r=0 a 2a 3a r=0 a 2a 3a
3.0/ - .66 - ,66 =-.61 -.56|=- .33 - .33 .31 -.28|- .97 -~ .82 -.40 -.25
2.5| - .97 - .82 -.40 -.25|- .97 - .82 -.40 -,25) - .97 -~ .82 -.40 -.25%
2,0l -1.3 -1.1  -.38 -.25|-1,3 -1.1  -.38 =-,25|-1.3 -1.1  -.38 =-.25
1.5 -3,1  -2.5 -,52 -,29|-3,1  -2,5 -,52 -.29|-3.1 -2.5 -.52 -.29
1.0l -7,1  -5.5 -.,72 -.31|-7.1  -5.,5 -,72 -.31|-7.1 =5.5 =-.72 -.31
0,5/-15  (=11) -73 =31 F15  (-11) -.73 31015 (-11) -.73 -.31
0 |-45,54 -22,77- o0 0 F45.54 -22.77 0 0 |45.54 -22.77 0 0
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The three distributions (A, B, C) are identical in all but the outer-
most row étv z = 3a, which is halved in B, and is the duplicate of the
next row in C. The density is calculated at the position Mrked by
parentheses, and has the values 0.59, 0.57, and 0.59, respectively, for
Distributions A, B, and C.
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TABLE 1

(a~c)

4 LapiaCe Potentiél Distribution. Mach Zero

Axial Radiai Position r/é

Position
z/a 0.0 0.5 1.0 1.5 2.0 2,5 3.0
3.00 2,34 2,26 2,04 1.75 1.44 1.15 0.903
2.75 2,74 2,64 2,35 1.97 1.58 1,23 0.943
2,50 3.26 3.11 2,73 2,22 1.73. 1.30 0.977
2,25 3.92 3.72 3.19 2,52 1.89 1.38 1.00
2,00 4,81 4,51 3.77 2,86 2,05 1.44 1.01
1.75 6.00 5.57 4,49 3.24 2,20 1.48 1.00
1.50 7.65 7.00 5.41 3.67 2,33 1.48 0.967
1.25 9,98 9.00 6.60 4,10 2.40 1.43 0.899
1.00 13.3 11.9 8.14 4,49 2,36 1.32 0.793
0.75 18,2 16.1 10.1 4,67 2,15 1.11 0.645
0.50 25,2 22,5 12,8 4,33 1.68 0.817 0.457
0.25 34,5 32.2 16.5 2.87 0.943 0.434 0.238
0.00 45,54 45,54 22.77 0.0 0.0 0.0 0.0

(a) Potential energy in units of kT = 0.112 volts.

All values are

positive for electrons, but become negative for ions.

(b) Probe potential = -5.1 volts at 1300°K

(¢) Probe radius a

3.33 cm, Debye length infinite
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Laplace Ion Current versus Probe Potential. Mach Zero

Volts

1.12
+560
224
.112
.056
.022
011

0.

- . Oll'

- .022
- .056
- .112
- 224
- .560

1.

2.
- 3,

4,
- 5.
- 3.1
- 6,
- 7.
- 8.
-9,
-10.

(a) kT

TABLE 2

—

- 5,

- 8.93
-17.9
-26.8
-35.7
~-44.6
~45.5
~-53.6
-62.5
~-71.4
-80.4
~-89.3

0.112 volts, s = 0.2 cm.
(b) Collecting radius = 1.665 cm.

- 69 -

I/Io

.000
.004
.132
.359
.603
.814
.899

1.00
1.09
1.18
1.44
1.86
2.66
5.01
8.05

14.8

21.4

28.0

34.3

35.3

40.8

47.1

53.4

59.7

65.6

(a-b)



TABLE 3

Laplace Attracted-Ion Current versus Ion Mach Number(a_c)

M 32931 jl/jO j2/j0 ngzg '~ % Spread
0 34,8
.5 24,5 24,7 . 25.4 23,6 7
1.0 15.6 15,5 15.7 15.5 1
1.5 9.5 9.4 9.2 9.8 6
2.0 6.0 6.1 5.6 6.4 13
3,0 3,2 3,5 2.8 3.5 22
4,0 2,2 |
6.0 1.4

(a) kT = 0,112 volts, s = 0,025 cm.
(b) Probe potential = =5.1 volts.

(¢) Collecting radius = 1.665 cm.
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- TABLE 4

Poisson Potential Distribution., Mach Zero(a—c)
Pﬁ:i:ion Radial Position r/a

z/a 0.0 0.5 1.0 1.5 2.0 2.5 3.0

3.00 0.475 0,458 0.404 0.340 0.277 0.215 0.170
2.75 0.542 0,513 0.432 0.363 0.297 0.219 0.176
2.50 0.799 0.755 0.621 0.483 0.367 0.223 - 0.178
2.25 1.32 1.23 0.972 0.678 0.430 0.228 0.179
2.00 2,08 1.92 1,44 0.903 0.503 0.238 0.180
1.75 3.20 2,92 2.08 1.19 0.566 0.247 0.179
1.50 4,80 4,35 2,99 1.57 0.665 0.252 0.174
1.25 7.17 6.44 4,25 2.03 ~0.782 0.250 0.164
1.00 - 10.7 ‘9,50 5.99 2,55 0.878 0.244 0.150
0.75 15,9 14.0 8.41 3.04 0.917 0.224 0.129
0.50 23.6 20,6 11.7 3.24 0.826 0.178 0.097
0.25 35.2 30.5 16.3 2,61 0.527 0.106 0.058
0.00 45,54 45,54 22.77 0.0 0.0 AO.O 0.0

(a) Potential emergy in units of kT = 0.112 volts.

All values are

positive for electrons, but become negative for ions.

(b) Probe potential = -5.1 volts at 1300°K.

(c) Probe radius a = 3:33 cm, Debye length = 1.0 cm.
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TABLE 5

Poisson Potential Distribution. Ion Mach 3(afc)
Pﬁiiiion Radial Position r/a
z/la___ 0.0 0,5 1.0 1.5 2.0 2,5 . 3.0
1.50 4.2 3.7 2.4 1.4 .87 58 .38
1.25 5.5 4,9 2,9 1.4 .62 39 .34
1.00 8.6 7.5 4,3 1.6 .51 .28 .26
0.75 14 12 6.7 2.0 : ¥ .18 .19
0.50 22 19 10 2.3 .33 .066 .12
0.25 34 29 15 2.0 .17 ~039 @ 023
0.00 46 46 23 0.0 0.0 0.0 0.0

(a) Potential energy in units of kT = 0.112 volts. All values are positive

for electrons, but become negative for ioms,

(b) Probe potential = 5;1 volts.,
(¢) Probe radius a = 3,33 cm,‘Debye length = 1.0 cm.

(d) Potential has change in sign at this point.
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TABLE 6

Attracted-Ion Current Density vérsus Radius(a—c)

(r=0) - (r=0.19) (r=0.83)
Mach Zero I/I§ j/jo ji/jo jZ/jo
Laplace (AD = «) 35.7 35.5 " 35.1 36.6
Poisson (y = 1em) 24.9  33.3 33.5 28.6
Ton Mach :3
Laplace (AD = ®) 3.2 - 3.5 2.8
Poisson (AD = i cm) 2.4 - 2.7 2.1

(a) kT = 0.112 volts, s = 0,025 cm.
(b) Probe potential = =5.1 volts.

(¢) Coliecting radius = 1.665 cm.
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- TABLE 7
o . (a~d)
Attracted-Ion Density Distribution. . Mach Zero®
Ax%a% Radial Position r/a
Position )
z/a 0.0 0.5 1.0 1.5 | 2.0 Z,S,V 3.0 .
3.00 - - : - - - . - -
2.75 - .65 (1.6) .63 (1.6) .49 (.8) .51 (3.2) 49 (3.2) -
205() - 051 ( 08) 05]-»( 92) 050 (08) 447 (ﬁ302) .51 (302) -
2.25 - 337 ( 04) 538 ( 54) 041 (-8) 048 (3.2) Q52 (3-2) -
2,00 - 037 (..2) .38 ( .2) .40 (.8) 45 (3.2) 50 (1.6) -
1.75 - 31 (.2) 35 ( .2) 41 (.4) 45 (.4) 46 ( .8) -
1.50 - .33 ( .1) .34 ( .2) .39 (.4) ,4&‘(3.4) b (&) -
1.25 - 035( ol) 034>( 02) 034 (04) 040 ( 04) 043 ( -4) -
1.00 - .38 ( ,05) .37 ( .05) .36 (,2) 39 (.2 40 (. 4) -
0.75 - 038 ( 005) 437 ( 005) 936 (02) 036 ( .2)1 038 ( -4) -~
0.50 - 45 ( .05) .36 ( .05) .32 (.2) o34 ( .2) .38 ( .2) -
0.25 - .55 ( .025) .49 ( ,025) .40 (,05) .29 ( .8 .34 ( .8) -
0,00 - - - - - ‘ - -
(a) Density in units of normal density at infinity,
(b) Probe potential = -5,1 volts at 1300°K,
(c) Probe radius a = 3,33 cm, Debye length % 1.0 cm,
(d) Numbers in parentheses are trajectory step sizes,
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TABLE 8

Repelled-Electron Density Distribution., Mach Zero(a_c)
sziiion Radial Position r/a

_ z/a 0.0 0.5 1,0 1.5 2.0 2.5
3.00 - - - - - =
2.75 - .37 .36 .34 .45 .48
2,50 - .20 .26 .37 .50 .45
2.25 - .18 .27 .37 W45 45
2,00 - .15 .23 .32 .45 .43
1.75 - .0786 .15 .27 .34 .43
1.50 - .027 .087 .22 . <34 42
1.25 - .0076 .038 .16 .31 .41
1.00 - .0002 .012 .098 .26 .41
0.75 - 0 .0011 .056 .22 .40
0.50 - 0 0 .026 .20 .39
0.25 - 0 0 .018 .16 <37
0.00 : - - - - - .-

(a) Density in units of normal density at infinity.
(b) Probe potential = -5,1 volts at 1300°K.

(¢) Probe radius a = 3.33 cm, Debye length = 1.0 cm.
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. TABLE 9

Attracted-Ton Density Distribution. Ion Mach 3(afd)

Pﬁziiion Radial Positjion r/a
z/a 0.0 - 0.5 1.0 ‘ 1,5 . 2.0 2.5 3.0
1.50 - - - - - - -
1,25 - 1.1 (.2) 1.1 (2) 1.0 (.8) .98 (.8) .95 (1.6) -
1.00 - 1.1 (.2). 299 (.2) .98 (.8) .95 (.8) .97 (1.6) -
0.75 - 1,1 (.025) .96 (,05) 292 (.2) .92 (.8) .96 ( .8) -
0.50 - 1.1 (.025) .96 (.025) -85 (.05) .90 (.8) .97 ( .8) -
0.25 - ‘lol (.025) 1.0 (.0125) . .87 (.0125) .83 (.4) 1.0 ( .8) -
0.00 - - _. - B _ _

(a) Density in units of normal density at infinity.

(b) Probe potential = -5.1 volﬁs at 1300°K,

(c) Probe radius a = 3.33 cm, Debye length = 1.0 cm.

(d) Numbers in parentheses are trajectory step sizes.,
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Repelled-Electron Density Distribution.

Axial
Position

z/a
1.50
1.25
1.00
0.75
0.50
0.25

0.00

TABLE 10

Radial Position r/a

0.5 1.0
.0050 .046
0 .0086
0 .0001
0 0
0 0

(a) Density in units of normal density at infinity.

(b) Probe potential = -5.1 volts at 1300°K.

(¢) Probe radius a = 3.33 cm, Debye length = 1.0 cm.
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Ion Mach'3(a‘c)
1.’5~ 2.0 205 300
.13 .17 .26 -
.13 .24 .28 -
.069 .26 .29 -
.043 .23 .34 -
.033 .22 .40 -



TABLE 11

Velocity Distribution (dj/dZ) versus Radius.

Poisson Mach Zero

(a=d)

(Step) (r=0) (r=0,19) (r=0.83) (r=1.48)
z S di/dz  dj/dz dji, /dz dj,/dz 'dj,/dz

40,00 .05 . 880

.025 1,000

,0125 1,000
45,50 .05 .783 1,000 ,995 .837 .708
45,54 .05 .775 1,000 .982 .830 .700

.025  ,858 1,000 1,000 .932 774

.0125  ,915 1,000 1,000 .999 828
45,60 .05 . 766 .9418%®) 9418 .818 .697

.025  ,845 .9418(®) 926 .759

,0125  ,.883 .9418(®) L9418 .822
46.00 .05  .628 63130 63130 624
(a) kT = 0,112 volts,

(b)

Probe potential = -5.1 volts, ¢ = ~45.54.

(¢) Collecting radius = 1.665 cm,

(d)
(e)
(£)

I and j in multiples of Io and jo, respectively,

0.9418
0.6313

]

exp (-0.06).
exp(-0.46),
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TABLE 12

Ion Central Current. Isolated Satellite in Laplace Field(a—d)
= 0(® M=1 M=1 M=1 M= 1.414
6 g y=0° y=45°  y=90° Y = 45°

0 0.999 3.54 - 2,65 0.980 3.62

-5 5.07 ( 5.07) 9.73 8.03. 3.93 8.47 .
-10 8.92 ( 8.94) 16.7 13.7 6.38 13.6
~-15 12.7  (12.8) 24.5 19.7 8.50 19.2
~20 15.8 (16.6) 32,5 25.4 10.2 24.7
=25 19.3 (20.3) 41.3 31.4 - 12.0 30.3
-30 22.9 (24.1) 50.5 37.5 13.6 36.2
-35 26.5 (27.9) 60.7 44.0 15.0 42.4
=40 30.0 (31.7) 70.5 - 50.2 16.6 48.4
-45 33.6  (35.4) 81.2 56.5 17.9 54.5
~-50 37.1  (39.1) 92.1 62.8 19.3 60.6

(a) Probe potential = ¢kT, where kT = 0,112 volts,
(b) M = Mach number, y = Mach angle with respectto probe normal,
(c) Step size = 0.05 cm.

(d) Satellite height and radius 100 cm and 50 cm, respectively. Probe
radius 3.33 cm.

(e) Numbers in parentheses are more accurate (see text),
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. TABLE: 13

Photoelectron Central Current. Isolated Satellite in Laplace Field(a_c)
- o = o = ° = °
Eo (volts) 1 - 9) Yg = 0 Vg 35 Yg 45 Yq 90
0.1 151 26,1 21,4 18.4 0
1.0 16 2.16 1.77 1.52
5,0 4 0,222 0,182 © 0.157
E0 = 0,1 volt ' Eo = 1.0 volt E0 = 5.0 volt
(sinocc = 0,864) (sinocc =.0,896) - (sinac = 0,943)
sino x  (em) *° sina x  (em) sina x  (cm)
s s s
0.867 -10.8 0.898 4,62 0.944 5.48
0.879 4,03 0.907 4,32 0.949 4,79
0.898 4,06 . 0,921 4,05 0.957 .  4.22.
0,922 3.85 0.940 3.79 0.967 3.75
0.947 3.43 0,959 3.35 - < 3.33
- < 3.33 - < 3,33
(a) Current density in multiples of emitted photocurrent density for

(b)

(e)!

normal solar inci_deﬁce°
Probe potential 15 volts.

Satellite height and radius 100 cm and 50 cm, respectively. Probe

radius 3.33 cm,
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FIGURE 1. OGO PLANAR PROBE GEOMETRY
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